Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Opt Express ; 32(4): 5659-5670, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38439286

RESUMO

The synthesis of laser coherence and the accuracy of beam scanning, which are based on an optical phased array (OPA), are severely constrained by phase noise. This limitation hampers their applications in various fields. Currently, the most widely utilized calibration method is adaptive optics, which can effectively mitigate phase noise and enhance the quality of the output beam. However, because of the multiple array elements of the OPA and the large optimization range for each element, the adaptive optimization method experiences slow convergence and a high risk of falling into local optima. We propose a narrowing search range algorithm that can quickly reduce phase noise by narrowing the search range of the optimal value. After initial optimization, the SPGD algorithm was used. This study was verified through simulations and experiments utilizing the OPA of various array elements. These findings indicate that the hybrid algorithm expedites the calibration process, requires simple experimental equipment, and can be broadly utilized.

2.
ACS Omega ; 9(5): 5972-5984, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38343959

RESUMO

Pulpitis is a common dental emergency that presents with intense pain; there is still no specific medicine to treat pulpitis-induced pain to date. Herein, differentially expressed genes in mouse anterior cingulate cortex (ACC) were investigated 7 days after pulp exposure via a combination of high-throughput transcriptomic and proteomic analyses. We screened 34 key genes associated with 8 critical pathways. Among these, genes (Elovl5, Ikbke, and Nbeal2) involved in immune or inflammatory responses exhibited exclusive regulation at the transcriptomic level, as confirmed by qRT-PCR. We also investigated the comprehensive expression profiles of genes (Erg1, Shank2, Bche, Serinf1, and Pax6) related to synaptic plasticity. Furthermore, the underlying mechanisms for pulpitis-induced pain through immune or inflammatory responses and synaptic plasticity were discussed. Taken together, our findings shed light on the mechanisms underlying pulpitis-induced pain, deepening our understanding of the molecular pathways and providing potential therapeutic and diagnostic targets.

3.
J Exp Med ; 221(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38417019

RESUMO

Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease with a clear genetic component. While most SLE patients carry rare gene variants in lupus risk genes, little is known about their contribution to disease pathogenesis. Amongst them, SH2B3-a negative regulator of cytokine and growth factor receptor signaling-harbors rare coding variants in over 5% of SLE patients. Here, we show that unlike the variant found exclusively in healthy controls, SH2B3 rare variants found in lupus patients are predominantly hypomorphic alleles, failing to suppress IFNGR signaling via JAK2-STAT1. The generation of two mouse lines carrying patients' variants revealed that SH2B3 is important in limiting the number of immature and transitional B cells. Furthermore, hypomorphic SH2B3 was shown to impair the negative selection of immature/transitional self-reactive B cells and accelerate autoimmunity in sensitized mice, at least in part due to increased IL-4R signaling and BAFF-R expression. This work identifies a previously unappreciated role for SH2B3 in human B cell tolerance and lupus risk.


Assuntos
Autoimunidade , Lúpus Eritematoso Sistêmico , Animais , Humanos , Camundongos , Autoimunidade/genética , Fator Ativador de Células B/metabolismo , Linfócitos B , Lúpus Eritematoso Sistêmico/genética , Células Precursoras de Linfócitos B
4.
CNS Neurosci Ther ; 30(1): e14496, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37950524

RESUMO

BACKGROUND: Pain is a rapid response mechanism that compels organisms to retreat from the harmful stimuli and triggers a repair response. Nonetheless, when pain persists for extended periods, it can lead to adverse changes into in the individual's brain, negatively impacting their emotional state and overall quality of life. Microglia, the resident immune cells in the central nervous system (CNS), play a pivotal role in regulating a variety of pain-related disorders. Specifically, recent studies have shed light on the central role that microglial purinergic ligand-gated ion channel 7 receptor (P2X7R) plays in regulating pain. In this respect, the P2X7R on microglial membranes represents a potential therapeutic target. AIMS: To expound on the intricate link between microglial P2X7R and pain, offering insights into potential avenues for future research. METHODS: We reviewed 140 literature and summarized the important role of microglial P2X7R in regulating pain, including the structure and function of P2X7R, the relationship between P2X7R and microglial polarization, P2X7R-related signaling pathways, and the effects of P2X7R antagonists on pain regulation. RESULTS: P2X7R activation is related to M1 polarization of microglia, while suppressing P2X7R can transfer microglia from M1 into M2 phenotype. And targeting the P2X7R-mediated signaling pathways helps to explore new therapy for pain alleviation. P2X7R antagonists also hold potential for translational and clinical applications in pain management. CONCLUSIONS: Microglial P2X7R holds promise as a potential novel pharmacological target for clinical treatments due to its distinctive structure, function, and the development of antagonists.


Assuntos
Microglia , Receptores Purinérgicos P2X7 , Humanos , Receptores Purinérgicos P2X7/metabolismo , Qualidade de Vida , Dor/metabolismo , Transdução de Sinais , Antagonistas do Receptor Purinérgico P2X/farmacologia , Antagonistas do Receptor Purinérgico P2X/uso terapêutico , Antagonistas do Receptor Purinérgico P2X/metabolismo
5.
Autophagy ; 20(1): 151-165, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37651673

RESUMO

ABBREVIATIONS: AKI: acute kidney injury; ATP: adenosine triphosphate; BUN: blood urea nitrogen; CLP: cecal ligation and puncture; eGFR: estimated glomerular filtration rate; H&E: hematoxylin and eosin staining; LCN2/NGAL: lipocalin 2; LPS: lipopolysaccharide; LTL: lotus tetragonolobus lectin; mKeima: mitochondria-targeted Keima; mtDNA: mitochondrial DNA; PAS: periodic acid - Schiff staining; RTECs: renal tubular epithelial cells; SAKI: sepsis-induced acute kidney injury; Scr: serum creatinine; SIRT3: sirtuin 3; TFAM: transcription factor A, mitochondrial; TMRE: tetramethylrhodamine.


Assuntos
Injúria Renal Aguda , Melatonina , Sepse , Sirtuína 3 , Humanos , Mitofagia , Autofagia , Lipopolissacarídeos , DNA Mitocondrial , Sepse/complicações , Rim , Proteínas de Ligação a DNA , Fatores de Transcrição , Proteínas Mitocondriais
6.
Sensors (Basel) ; 23(23)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38067769

RESUMO

In recent years, the silicon-based optical phased array has been widely used in the field of light detection and ranging (LIDAR) due to its great solid-state steering ability. At the same time, the optical phased array transceiver integration scheme provides a feasible solution for low-cost information exchange of small devices in the future. Based on this, this paper designs a two-dimensional optical phased array transceiver with high efficiency and a large field of view, which can realize a dense array with antenna spacing of 5.5 µm × 5.5 µm by using low crosstalk waveguide wiring. Additionally, it can realize the conversion between the receiving mode and the transmitting mode by using the optical switch. The simulation results show that the scanning range of 16.3° × 16.3° can be achieved in the transmitting mode, and the overall loss is lower than 10dB. In the receiving mode, we can achieve a collection efficiency of more than 27%, and the antenna array receiving loss is lower than 12.1 dB.

7.
Braz J Med Biol Res ; 56: e12855, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37703110

RESUMO

Cell division cycle 42 (CDC42) regulates T helper (Th) cell differentiation and is related to psychological disorders. This study aimed to assess the correlation between blood CDC42 and Th cells, and their association with mental issues in stroke patients. Peripheral blood samples were obtained from 264 stroke patients and 50 controls. Then, serum CDC42 was measured by enzyme-linked immunosorbent assay, and Th1, Th2, and Th17 cells were detected by flow cytometry. Hospital Anxiety and Depression Scale (HADS) and Mini Mental State Examination (MMSE) were applied to patients. CDC42 was decreased (P<0.001), Th1 (P=0.013) and Th17 (P<0.001) cells were elevated, while Th2 cells (P=0.108) showed no difference in stroke patients compared to controls. In addition, CDC42 was negatively associated to Th1 (P=0.013) and Th17 (P<0.001) cells in stroke patients but were not associated with Th2 cells (P=0.223). Interestingly, CDC42 was negatively associated with HADS-anxiety (P<0.001) and HADS-depression scores (P=0.034) and positively associated with MMSE score (P<0.001) in stroke patients. Lower CDC42 was associated to lower occurrence of anxiety (P=0.002), depression (P=0.001), and cognitive impairment (P=0.036) in stroke patients. Furthermore, increased Th17 cells were positively correlated with HADS-anxiety and HADS-depression scores and inversely correlated with MMSE score, which were also associated with higher occurrence of anxiety, depression, and cognitive impairment in stroke patients (all P<0.05). Blood CDC42 and Th17 cells were correlated, and both of them were linked to the risk of anxiety, depression, and cognitive impairment. However, the findings need further large-scale validation, and the implicated mechanism needs more investigation.


Assuntos
Disfunção Cognitiva , Acidente Vascular Cerebral , Humanos , Depressão/etiologia , Ansiedade/etiologia , Células Th17 , Disfunção Cognitiva/etiologia , Acidente Vascular Cerebral/complicações , Ciclo Celular
8.
Theor Appl Genet ; 136(9): 193, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37606787

RESUMO

KEY MESSAGE: Thirty-three stable QTL for 13 yield-related traits across ten environments were identified in the PD34/MY47 RIL population, and a candidate gene TaGS5-3D in Qmt.nwafu.3D was preliminarily identified to affect grain-related traits through accumulation of specific transcripts. Dissecting the genetic basis of yield-related traits is pivotal for improvement of wheat yield potential. In this study, a recombinant inbred line (RIL) population genotyped by SNP markers was used to detect quantitative trait loci (QTL) related to yield-related traits in ten environments. A total of 102 QTL were detected, including 33 environmentally stable QTL and 69 putative QTL. Among them, Qmt.nwafu.3D was identified as a pleiotropic QTL in the physical interval of 149.77-154.11 Mb containing a potential candidate gene TaGS5-3D. An SNP (T > C) was detected in its ninth intron, and TaGS5-3D-C was validated as a superior allele associated with larger grains using a CAPS marker. Interestingly, we found that TaGS5-3D-C was closely related to significantly up-regulated expression of intron-retained transcript (TaGS5-3D-PD34.1), while TaGS5-3D-T was related to dominant expression of normal splicing transcript (TaGS5-3D-MY47.1). Our results indicated that alternative splicing associated with the SNP T/C could be involved in the regulation of grain-related traits, laying a foundation for the functional analysis of TaGS5-3D and its greater potential application in high-yield wheat breeding.


Assuntos
Melhoramento Vegetal , Triticum , Triticum/genética , Íntrons , Alelos , Grão Comestível/genética , Nucleotídeos
9.
Sci Adv ; 9(31): eadd4222, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37531438

RESUMO

Cardiac fibrosis plays a key role in the progression of diabetic cardiomyopathy (DCM). Previous studies demonstrated the cardioprotective effects of natriuretic peptides. However, the effects of natriuretic peptide receptor C (NPRC) on cardiac fibrosis in DCM remains unknown. Here, we observed that myocardial NPRC expression was increased in mice and patients with DCM. NPRC-/- diabetic mice showed alleviated cardiac fibrosis, as well as improved cardiac function and remodeling. NPRC knockdown in both cardiac fibroblasts and cardiomyocytes decreased collagen synthesis and proliferation of cardiac fibroblasts. RNA sequencing identified that NPRC deletion up-regulated the expression of TGF-ß-induced factor homeobox 1 (TGIF1), which inhibited the phosphorylation of Smad2/3. Furthermore, TGIF1 up-regulation was mediated by the activation of cAMP/PKA and cGMP/PKG signaling induced by NPRC deletion. These findings suggest that NPRC deletion attenuated cardiac fibrosis and improved cardiac remodeling and function in diabetic mice, providing a promising approach to the treatment of diabetic cardiac fibrosis.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Receptores do Fator Natriurético Atrial , Animais , Camundongos , Diabetes Mellitus Experimental/genética , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/metabolismo , Fibrose , Miócitos Cardíacos/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Receptores do Fator Natriurético Atrial/genética
10.
Cell Death Dis ; 14(7): 457, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37479690

RESUMO

The increase of lactate is an independent risk factor for patients with sepsis-induced acute kidney injury (SAKI). However, whether elevated lactate directly promotes SAKI and its mechanism remain unclear. Here we revealed that downregulation of the deacetylase Sirtuin 3 (SIRT3) mediated the hyperacetylation and inactivation of pyruvate dehydrogenase E1 component subunit alpha (PDHA1), resulting in lactate overproduction in renal tubular epithelial cells. We then found that the incidence of SAKI and renal replacement therapy (RRT) in septic patients with blood lactate ≥ 4 mmol/L was increased significantly, compared with those in septic patients with blood lactate < 2 mmol/L. Further in vitro and in vivo experiments showed that additional lactate administration could directly promote SAKI. Mechanistically, lactate mediated the lactylation of mitochondrial fission 1 protein (Fis1) lysine 20 (Fis1 K20la). The increase in Fis1 K20la promoted excessive mitochondrial fission and subsequently induced ATP depletion, mitochondrial reactive oxygen species (mtROS) overproduction, and mitochondrial apoptosis. In contrast, PDHA1 activation with sodium dichloroacetate (DCA) or SIRT3 overexpression decreased lactate levels and Fis1 K20la, thereby alleviating SAKI. In conclusion, our results show that PDHA1 hyperacetylation and inactivation enhance lactate overproduction, which mediates Fis1 lactylation and exacerbates SAKI. Reducing lactate levels and Fis1 lactylation attenuate SAKI.


Assuntos
Injúria Renal Aguda , Sepse , Sirtuína 3 , Humanos , Ácido Láctico , Sirtuína 3/genética , Injúria Renal Aguda/genética , Sepse/complicações , Sepse/genética , Apoptose , Proteínas Mitocondriais/genética
11.
Front Neurorobot ; 17: 1124676, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37144086

RESUMO

The integration of multiple sensors is a crucial and emerging trend in the development of autonomous driving technology. The depth image obtained by stereo matching of the binocular camera is easily influenced by environment and distance. The point cloud of LiDAR has strong penetrability. However, it is much sparser than binocular images. LiDAR-stereo fusion can neutralize the advantages of the two sensors and maximize the acquisition of reliable three-dimensional information to improve the safety of automatic driving. Cross-sensor fusion is a key issue in the development of autonomous driving technology. This study proposed a real-time LiDAR-stereo depth completion network without 3D convolution to fuse point clouds and binocular images using injection guidance. At the same time, a kernel-connected spatial propagation network was utilized to refine the depth. The output of dense 3D information is more accurate for autonomous driving. Experimental results on the KITTI dataset showed that our method used real-time techniques effectively. Further, we demonstrated our solution's ability to address sensor defects and challenging environmental conditions using the p-KITTI dataset.

12.
Front Pharmacol ; 14: 1124633, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37251330

RESUMO

Introduction: The energy imbalance when energy intake exceeds expenditure acts as an essential factor in the development of insulin resistance (IR). The activity of brown adipose tissue, which is involved in the dissipation of energy via heat expenditure decreases under type 2 diabetic mellitus (T2DM) state when the number of pathological aging adipocytes increases. Protein tyrosine phosphatase non-receptor type 2 (PTPN2) regulates several biological processes by dephosphorylating several cellular substrates; however, whether PTPN2 regulates cellular senescence in adipocytes and the underlying mechanism has not been reported. Methods: We constructed a model of type 2 diabetic mice with PTPN2 overexpression to explore the role of PTPN2 in T2DM. Results: We revealed that PTPN2 facilitated adipose tissue browning by alleviating pathological senescence, thus improving glucose tolerance and IR in T2DM. Mechanistically, we are the first to report that PTPN2 could bind with transforming growth factor-activated kinase 1 (TAK1) directly for dephosphorylation to inhibit the downstream MAPK/NF-κB pathway in adipocytes and regulate cellular senescence and the browning process subsequently. Discussion: Our study revealed a critical mechanism of adipocytes browning progression and provided a potential target for the treatment of related diseases.

13.
Toxicology ; 492: 153530, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37121536

RESUMO

Endemic fluorosis is a global public health problem. Cardiovascular diseases caused by fluoride are closely related to endothelial cell injury. Metabolism disorder of endothelial cells (ECs) are recognized as the key factor of endothelial dysfunction which has been a hot topic in recent years. However, the toxic effect of fluoride on vascular endothelium has not been elucidated. The aim of this study was to explore the alteration of endothelial cell metabolites in Human Umbilical Vein Endothelial Cells (HUVECs) exposed to NaF using LC-MS/MS technique. The screening conditions were Variable Importance for the Projection (VIP) > 1 and P < 0.05. It was found that the expression of the metabolites Lumichrome and S-Methyl-5'-thioadenosine was upregulated and of the other metabolites, such as Creatine, L-Glutamate, Stearic acid was downregulated. Differential metabolites were found to be primarily related to FoxO、PI3K/Akt and apoptosis signaling pathways by Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. From the perspective of metabolism, this study explored the possible mechanism of fluoride induced endothelial cell injury which providing theories and clues for subsequent studies.


Assuntos
Fluoretos , Fosfatidilinositol 3-Quinases , Humanos , Cromatografia Líquida , Fosfatidilinositol 3-Quinases/metabolismo , Espectrometria de Massas em Tandem , Células Endoteliais da Veia Umbilical Humana
14.
Front Nutr ; 10: 1120168, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937361

RESUMO

Physiologically, the intestinal barrier plays a crucial role in homeostasis and nutrient absorption and prevents pathogenic entry, harmful metabolites, and endotoxin absorption. Recent advances have highlighted the association between severely damaged intestinal barriers and diabetes, obesity, fatty liver, and cardiovascular diseases. Evidence indicates that an abated intestinal barrier leads to endotoxemia associated with systemic inflammation, insulin resistance, diabetes, and lipid accumulation, accelerating obesity and fatty liver diseases. Nonetheless, the specific mechanism of intestinal barrier damage and the effective improvement of the intestinal barrier remain to be explored. Here, we discuss the crosstalk between changes in the intestinal barrier and metabolic disease. This paper also highlights how to improve the gut barrier from the perspective of natural medicine, gut microbiota remodeling, lifestyle interventions, and bariatric surgery. Finally, potential challenges and prospects for the regulation of the gut barrier-metabolic disease axis are discussed, which may provide theoretical guidance for the treatment of metabolic diseases.

15.
Front Pharmacol ; 14: 1069093, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36874025

RESUMO

Background: Hepatocellular carcinoma (HCC), as an aggressive cancer with a high mortality rate, needs high-efficiency and low-toxicity drug therapy. Natural products have great potential as candidate lead compounds for the development of new HCC drugs. Crebanine is an isoquinoline alkaloid derived from Stephania with various potential pharmacological effects such as anti-cancer. However, the molecular mechanism underlying crebanine-induced liver cancer cells apoptosis has not been reported. Here, we investigated the effect of crebanine on HCC and identified a potential mechanism of action. Methods: In this paper, we intend to detect the toxic effects of crebanine on hepatocellular carcinoma HepG2 cells through a series of in vitro experiments, including detecting the effects of crebanine on the proliferation of HepG2 cells using the CCK8 method and plate cloning assay, observing the growth status and morphological changes of crebanine on HepG2 cells by inverted microscopy; and using the Transwell method to determine the the effect of crebanine on the migration and invasion ability of HepG2 cells; using Hoechst 33258 assay to stain cancer cells, thus observing the effect of crebanine on the morphology of HepG2 apoptotic cells, and detecting the apoptotic state and level of HepG2 cells by flow cytometry; using ROS kit and JC-1 assay kit to detect the changes of reactive oxygen species and mitochondrial membrane potential of HepG2 The immunofluorescence assay was taken to verify whether crebanine had an effect on the expression of p-FoxO3a in cancer cells; the Wetern blot assay was also used to examine the effect of crebanine on proteins related to the mitochondrial apoptotic pathway and its effect on the regulation of the relative protein expression of AKT/FoxO3a axis; after this, NAC and AKT inhibitor LY294002 were used to cells were pretreated with NAC and AKT inhibitor LY294002, respectively, in order to further validate the inhibitory effect of crebanine. Results: It was shown that crebanine effectively inhibited the growth and capacity of HepG2 cells migration and invasion in a dose-dependent manner. Furthermore, the effect of crebanine on the morphology of HepG2 cells was observed through microscopy. Meanwhile, crebanine induced apoptosis by causing reactive oxygen species (ROS) burst and mitochondrial membrane potential (MMP) disrupt. We found that crebanine could down-regulate Bcl-2 and up-regulate Bax, cleaved-PARP, cleaved-caspase-3 and cleaved-caspase-9, but these effects were overturned by ROS inhibitor N-acetylcysteine (NAC). Crebanine also down-regulated p-AKT and p-FoxO3a, and the PI3K inhibitor LY294002 significantly enhances this effect. We also found that the expression of AKT/FoxO3a signaling pathway was ROS-dependent. As shown by Western blots, NAC could partially attenuate the inhibitory effect of crebanine on AKT and FoxO3a phosphorylation. Conclusion: Based on our results, our results suggest that crebanine, as a compound with potential anticancer activity, has significant cytotoxic effects on hepatocellular carcinoma,and it likely induces apoptosis via ROS in the mitochondrial pathway and simultaneously affects the biological function of HCC via the ROS-AKT-FoxO3a signaling axis.

16.
Langmuir ; 39(9): 3494-3501, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36802671

RESUMO

Alkane catalytic cracking is regarded as one of the most significant processes for light olefin production; however, it suffers from serve catalyst deactivation due to coke formation. Herein, HZSM-5/MCM-41 composites with different Si/Al2 ratios were first prepared by the hydrothermal method. The physicochemical properties of the prepared catalysts were analyzed by a series of bulk and surface characterization methods, and the catalytic performance was tested in n-decane catalytic cracking. It was found that HZSM-5/MCM-41 showed a higher selectivity to light olefins and a lower deactivation rate compared with the parent HZSM-5 due to an enhanced diffusion rate and decreased acid density. Moreover, the structure-reactivity relationship revealed that conversion, light olefin selectivity, and the deactivation rate strongly depended on the total acid density. Furthermore, HZSM-5/MCM-41 was further extruded with γ-Al2O3 to obtain the catalyst pellet, which showed an even higher selectivity to light olefins (∼48%) resulting from the synergy effect of the fast diffusion rate and passivation of external acid density.

17.
Arthritis Rheumatol ; 75(6): 1058-1071, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36622335

RESUMO

OBJECTIVE: Increased Toll-like receptor 7 (TLR-7) signaling leading to the production of type I interferon (IFN) is an important contributor to human systemic lupus erythematosus (SLE). Protein kinase C and casein kinase substrate in neurons 1 (PACSIN1), a molecule that regulates synaptic vesicle recycling, has been linked to TLR-7/TLR-9-mediated type I IFN production in humans and mice, but the underlying mechanism is unknown. We undertook this study to explore the pathogenicity and underlying mechanism of a de novo PACSIN1 missense variant identified in a child with SLE. METHODS: PACSIN1 Q59K de novo and null variants were introduced into a human plasmacytoid dendritic cell line and into mice using CRISPR/Cas9 editing. The effects of the variants on TLR-7/TLR-9 signaling in human and mouse cells, as well as PACSIN1 messenger RNA and IFN signature in SLE patients, were assessed using real-time polymerase chain reaction and flow cytometry. Mechanisms were investigated using luciferase reporter assays, RNA interference, coimmunoprecipitation, and immunofluorescence. RESULTS: We established that PACSIN1 forms a trimolecular complex with tumor necrosis factor receptor-associated factor 4 (TRAF4) and TRAF6 that is important for the regulation of type I IFN. The Q59K mutation in PACSIN1 augments binding to neural Wiskott-Aldrich syndrome protein while it decreases binding to TRAF4, leading to unrestrained TRAF6-mediated activation of type I IFN. Intriguingly, PACSIN1 Q59K increased TLR-7 but not TLR-9 signaling in human cells, leading to elevated expression of IFNß and IFN-inducible genes. Untreated SLE patients had high PACSIN1 expression in peripheral blood cells that correlated positively with IFN-related genes. Introduction of the Pacsin1 Q59K mutation into mice caused increased surface TLR-7 and TRAIL expression in B cells. CONCLUSION: PACSIN1 Q59K increases IFNß activity through the impairment of TRAF4-mediated inhibition of TLR-7 signaling, possibly contributing to SLE risk.


Assuntos
Interferon Tipo I , Lúpus Eritematoso Sistêmico , Criança , Humanos , Camundongos , Animais , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo , Interferon-alfa , Proteína Quinase C/metabolismo , Fator 4 Associado a Receptor de TNF/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Lúpus Eritematoso Sistêmico/metabolismo , Interferon Tipo I/metabolismo , Neurônios/metabolismo , Receptor Toll-Like 9 , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
18.
J Colloid Interface Sci ; 629(Pt A): 571-581, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36088702

RESUMO

Novel reusable acid-resistant magnetic polymer nanospheres-immobilized MIL-100 (CoFe2O4@Polymer@MIL-100) catalyst was prepared by a layer-by-layer method to achieve a controllable structure. The obtained core-shell catalyst consisted of modified magnetic nanoparticles as the core, a carboxylic-functionalized polymer as the protective layer, and an MIL-100 shell as the active catalytic layer by chemical bonds on the polymer. The catalysts showed good stability, good magnetic saturation, and acid corrosion resistance. The thickness of the MIL-100 shell could be adjusted by controlling the metal salt concentration and the number of layer-by-layer cycles. Nano-sized MIL-100 showed better mass transfer efficiency and catalytic activity. A conversion of 97.7% after 10 min was observed during acetalization when using CoFe2O4@Polymer@MIL-100 as the catalyst. CoFe2O4@Polymer@MIL-100 could be reused at least five times. The use of a polymer layer on CoFe2O4@Polymer@MIL-100 prevented acidic ligands from corroding the magnetic core. Chemical bonds between MIL-100 and functional magnetic polymer cores improved the catalyst's stability. CoFe2O4@Polymer@MIL-100 exhibited high activity, excellent stability, and easy magnetic separation.

19.
Braz. j. med. biol. res ; 56: e12855, 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1505881

RESUMO

Cell division cycle 42 (CDC42) regulates T helper (Th) cell differentiation and is related to psychological disorders. This study aimed to assess the correlation between blood CDC42 and Th cells, and their association with mental issues in stroke patients. Peripheral blood samples were obtained from 264 stroke patients and 50 controls. Then, serum CDC42 was measured by enzyme-linked immunosorbent assay, and Th1, Th2, and Th17 cells were detected by flow cytometry. Hospital Anxiety and Depression Scale (HADS) and Mini Mental State Examination (MMSE) were applied to patients. CDC42 was decreased (P<0.001), Th1 (P=0.013) and Th17 (P<0.001) cells were elevated, while Th2 cells (P=0.108) showed no difference in stroke patients compared to controls. In addition, CDC42 was negatively associated to Th1 (P=0.013) and Th17 (P<0.001) cells in stroke patients but were not associated with Th2 cells (P=0.223). Interestingly, CDC42 was negatively associated with HADS-anxiety (P<0.001) and HADS-depression scores (P=0.034) and positively associated with MMSE score (P<0.001) in stroke patients. Lower CDC42 was associated to lower occurrence of anxiety (P=0.002), depression (P=0.001), and cognitive impairment (P=0.036) in stroke patients. Furthermore, increased Th17 cells were positively correlated with HADS-anxiety and HADS-depression scores and inversely correlated with MMSE score, which were also associated with higher occurrence of anxiety, depression, and cognitive impairment in stroke patients (all P<0.05). Blood CDC42 and Th17 cells were correlated, and both of them were linked to the risk of anxiety, depression, and cognitive impairment. However, the findings need further large-scale validation, and the implicated mechanism needs more investigation.

20.
Membranes (Basel) ; 12(10)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36295711

RESUMO

Side-chain type sulfonated poly(phenylquinoxaline) (SPPQ)-based proton exchange membranes (PEMs) with different ionic exchange capacity (IEC) were successfully synthesized by copolymerization from 4,4'-bis (2-diphenyletherethylenedione) diphenyl ether, 4,4'-bis (2-phenylethylenedione) diphenyl ether and 3,3',4,4'-tetraaminobiphenyl, and post-sulfonation process. The sulfonic acid groups were precisely grafted onto the p-position of phenoxy groups in the side chain of PPQ after the convenient condition of the post-sulfonation process, which was confirmed by 1H NMR spectra and FTIR. The sulfonic acid groups of side-chain type SPPQ degraded at around 325 °C, and their maximum stress was higher than 47 MPa, indicating great thermal and mechanical stability. The water uptake increased with the increasing IEC and temperature. The size change in their plane direction was shown to be lower than 6%, indicating the stability of membrane electrode assembly. The SPPQ PEMs displayed higher proton conductivity than that of main chain. In the single cell test, the maximum power density of side-chain type SPPQ-5 was 63.8 mW cm-2 at 20 wt% methanol solution and O2 at 60 °C, which is largely higher than 18.4 mW cm-2 of NR212 under the same conditions. The SPPQ PEMs showed high performance (62.8 mW cm-2) even when the methanol concentration was as high as 30 wt%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...